Differentially Private Bayesian Optimization
نویسندگان
چکیده
Bayesian optimization is a powerful tool for finetuning the hyper-parameters of a wide variety of machine learning models. The success of machine learning has led practitioners in diverse real-world settings to learn classifiers for practical problems. As machine learning becomes commonplace, Bayesian optimization becomes an attractive method for practitioners to automate the process of classifier hyper-parameter tuning. A key observation is that the data used for tuning models in these settings is often sensitive. Certain data such as genetic predisposition, personal email statistics, and car accident history, if not properly private, may be at risk of being inferred from Bayesian optimization outputs. To address this, we introduce methods for releasing the best hyper-parameters and classifier accuracy privately. Leveraging the strong theoretical guarantees of differential privacy and known Bayesian optimization convergence bounds, we prove that under a GP assumption these private quantities are often near-optimal. Finally, even if this assumption is not satisfied, we can use different smoothness guarantees to protect privacy.
منابع مشابه
Differentially Private Local Electricity Markets
Privacy-preserving electricity markets have a key role in steering customers towards participation in local electricity markets by guarantying to protect their sensitive information. Moreover, these markets make it possible to statically release and share the market outputs for social good. This paper aims to design a market for local energy communities by implementing Differential Privacy (DP)...
متن کاملDifferential Privacy Applications to Bayesian and Linear Mixed Model Estimation
We consider a particular maximum likelihood estimator (MLE) and a computationally-intensive Bayesian method for differentially private estimation of the linear mixed-effects model (LMM) with normal random errors. The LMM is important because it is used in small area estimation and detailed industry tabulations that present significant challenges for confidentiality protection of the underlying ...
متن کاملBayesian inference under differential privacy
Bayesian inference is an important technique throughout statistics. The essence of Beyesian inference is to derive the posterior belief updated from prior belief by the learned information, which is a set of differentially private answers under differential privacy. Although Bayesian inference can be used in a variety of applications, it becomes theoretically hard to solve when the number of di...
متن کاملPrivacy for Free: Posterior Sampling and Stochastic Gradient Monte Carlo
We consider the problem of Bayesian learning on sensitive datasets and present two simple but somewhat surprising results that connect Bayesian learning to “differential privacy”, a cryptographic approach to protect individual-level privacy while permiting database-level utility. Specifically, we show that that under standard assumptions, getting one single sample from a posterior distribution ...
متن کاملRobust and Private Bayesian Inference
We examine the robustness and privacy of Bayesian inference, under assumptions on the prior, and with no modifications to the Bayesian framework. First, we generalise the concept of differential privacy to arbitrary dataset distances, outcome spaces and distribution families. We then prove bounds on the robustness of the posterior, introduce a posterior sampling mechanism, show that it is diffe...
متن کامل